Новости

Ученые выяснили, как светятся грибы. И создали светящиеся дрожжи

29 ноября 2018

Ученые Института биоорганической химии РАН и ФИЦ Красноярский научный центр СО РАН вместе с российскими и иностранными коллегами полностью описали механизм, позволяющий грибам светиться в темноте. Испускание света обеспечивают всего четыре фермента, перенос которых в любые другие организмы делает их светящимися. Чтобы это проиллюстрировать, авторы создали светящиеся в темноте дрожжи. Теоретическая и экспериментальная части работы поддержаны грантами Российского научного фонда. Результаты исследования опубликованы в журнале Proceedings of the National Academy of Sciences.

В ходе нового исследования ученые обнаружили в грибах все ферменты, необходимые для производства этой молекулы, а также фермент, благодаря которому происходит испускание света.

Исследователи протестировали работу фермента люциферазы, запускающего реакцию свечения, в различных типах клеток, включая человеческие раковые клетки и эмбрионы шпорцевой лягушки. Во всех случаях результат был положительный: внедренный ген работал в выбранных клетках, и после добавки люциферина наблюдалось свечение. Именно люцифераза часто используется в медицинской диагностике или экологическом мониторинге.

«Если вы понимаете, как устроена биолюминесцентная система, то можете добавить в пробирку необходимые компоненты и увидеть свечение. Важным этапом работы было выделение основных ферментов системы свечения грибов – люциферина и люциферазы. Нам удалось это сделать, используя комбинацию аналитических методов, что и позволило “разобрать” всю систему на составляющие», – рассказывает один из участников исследования, кандидат биологических наук, научный сотрудник Института биофизики СО РАН (Красноярск) Константин Пуртов.

Система свечения грибов оказалась на удивление простой. Она близка к обычным путям обмена веществ живых организмов. Ученые обнаружили ферменты, осуществляющие в клетках грибов «цикл кофейной кислоты», – каскад реакций, приводящих к биосинтезу люциферина и испусканию света. Работа этих ферментов необходима и достаточна для того, чтобы сделать светящимся любой организм, клетки которого производят кофейную кислоту. А для организмов, не содержащих этого вещества, свечения можно добиться добавлением еще двух ферментов, что авторы продемонстрировали, создав светящиеся в темноте дрожжи.

«Мы обнаружили в грибах необходимые компоненты для создания своеобразного генетического модуля, обеспечивающего биолюминесценцию: перенося его из генома в геном, мы можем сделать практически любой организм светящимся, что раньше было недостижимой целью для исследователей», – пояснил первый автор статьи Алексей Котлобай, сотрудник Лаборатории химии метаболических путей ИБХ РАН (Москва).

Расшифрованный «цикл кофейной кислоты», приводящей к биолюминисценции. Рисунок взят из статьи в журнале.

 

По словам ученых, несмотря на то, что им удалось многое понять про генетику биолюминесценции грибов, самое интересное – впереди.

«Результаты этой работы открывают возможности как для новых фундаментальных исследований – например, в области экологии грибов или фотофизики ферментов – так и для разработки новых молекулярных технологий», – добавляет Юлиана Мокрушина, сотрудник Лаборатории биокатализа ИБХ РАН, делящий первое авторство в опубликованной статье.

Исследование началось много лет назад в Институте биофизики СО РАН, когда для выполнения работ по мегагранту в Красноярск приехал нобелевский лауреат Осаму Шимомура. Последующее объединение усилий красноярских ученых с коллегами из ИБХ РАН привело к прорыву в теме биолюминесценции.

«Это исследование – прекрасный пример того, насколько эффективной может быть совместная работа ученых разных специальностей из разных стран, из научных институтов и коммерческих компаний, – рассказал руководитель проекта Илья Ямпольский, заведующий Отделом биомолекулярной химии Института биоорганической химии РАН. – Нам удалось не только понять генетику биолюминесценции грибов и проследить механизм ее эволюции, но еще и создать совершенно новый молекулярный инструмент для биотехнологии. Например, новую систему можно будет использовать для более детальной и качественной визуализации таких биологических процессов, как миграция раковых клеток, а также при разработке новых лекарств».

Работа проходила в сотрудничестве с учеными из компании Планта, Института биофизики СО РАН, Института теоретической и экспериментальной биофизики РАН, Российского национального исследовательского медицинского университета имени Н.И. Пирогова, Сколковского института науки и технологий, Института науки и технологий Австрии, Лондонского института медицинских наук, Центра геномной регуляции (Испания), Университета Сан-Паулу (Бразилия) и Университета Чубу (Япония).

Текст: Сергей Гончарук, ИБХ РАН